Aligning Videos In Space and Time

Senthil Purushwalkam¹, Tian Ye¹, Saurabh Gupta³, Abhinav Gupta^{1,2}

¹Carnegie Mellon University ²Facebook AI Research ³University of Illinois Urbana-Champaign (UIUC)

European Conference on Computer Vision (ECCV), 2020

Long Presentation

Video Understanding in Computer Vision

Action Recognition

Classification of Videos into Predefined Action Categories Localizing Predefined Actions

Temporally in Videos

Coarse Understanding of Videos Data Collection is Not Scalable

Action Detection

Video Captioning

Generating Textual **Descriptions for Videos**

Figures taken from Kuehne et al. ICCV 2011; Krishna et al. ICCV 2017; Xiong et al. arXiv 2017.

Video Understanding via Association

Baseball Bowling

Ask not "what is this?", ask "what is this like".

Retrieved Video

-Moshe Bar

Video Understanding via Association

What does this achieve?

Describing the states object states in one video in terms of known reference videos

Any knowledge about the reference video can be transferred to the query video

> Data collection for this is still infeasible!

Ask not "what is this?", ask "what is this like".

Retrieved Video

-Moshe Bar

What is a cycle?

Match forward in time

Match to another video

Match backward in time

Positive Cycle

Positive Cycle

Negative Cycle

Precompute tracks using an unsupervised tracker

Learning Correspondence From the Cycle-Consistency of Time Xiaolong Wang, Allan Jabri, Alexei A. Efros; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2566-2576

What is a cycle?

Follow track forward in time

Match to another video

Follow track backward in time

Depends on the feature extractor

fθ

What is a cycle?

Follow track forward N₁ frames

Match to another video

Follow track backward N₂ frames

S₂₁

Depends on the feature extractor

Ĵθ

Score of a cycle *S*₁₂

What is a cycle?

Follow track forward N₁ frames

Match to another video

Follow track backward N₂ frames

Objective for training f_{θ} :

 $L = \max(0, S^- - S^+ + \delta)$

S⁻ =

For a given starting patch Score of highest scoring Positive Cycle

Score of highest scoring Negative Cycle

Training Datasets

Penn Action Dataset¹

Videos depicting 15 different actions with human joint annotations

Videos depicting pouring from one container into another

- 1.
- 2. *arXiv:1612.06699* (2016).
- 3. *(ECCV)*. 2018.

Pouring Dataset²

Epic Kitchens Dataset³

First-person videos depicting activities in kitchens

Weiyu Zhang, Menglong Zhu and Konstantinos Derpanis, "From Actemes to Action: A Strongly-supervised Representation for Detailed Action Understanding" International Conference on Computer Vision (ICCV). Dec 2013.

Sermanet, Pierre, Kelvin Xu, and Sergey Levine. "Unsupervised perceptual rewards for imitation learning." arXiv preprint

Damen, Dima, et al. "Scaling egocentric vision: The epic-kitchens dataset." Proceedings of the European Conference on Computer Vision

Qualitative Evaluation: Patch Nearest Neighbor

Retrieval

A representation that can encode patch appearance while accounting for object states

Query

Retrieval

Qualitative Results: Spatio-Temporal Alignment

Learned representation can effectively *spatio-temporally align videos*

Aligning Patches

Choose tracks that form high scoring cycles

Aligning Frames

Frames with high cumulative patch alignment scores

Quantitative Results: Spatio-Temporal Alignment

Temporal Alignment Error

Mean difference in joint angles between aligned frames

Initialization Method	Temporal Alignment Err	Spatial Alignment Acc
ImageNet	0.509	0.153
Mask-RCNN [1]	0.504	0.202
Unsupervised Tracker [2]	0.501	0.060
Kinetics Action Classification Model	0.492	0.150
Penn Action Classification Model	0.521	0.157
Our features	0.448	0.284

Spatial Alignment Accuracy Accuracy of aligning keypoint patches (within some neighborhood)

A spatio-temporal alignment formulation for dense video understanding via association to known videos

A method to learn representations using cycle-consistency

Demonstrate that the learned representation encodes object appearance and object states

Demonstrate that the proposed approach can be effectively used to spatio-temporally align videos

Summary

Thank you for listening! Checkout our project paper for relevant links: <u>http://www.cs.cmu.edu/~spurushw/publication/alignvideos/</u>

