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OVERVIEW: THE NEED FOR DIVERSITY SPECIALIZATION IN IMAGE CLASSIFICATION

Many interesting inference problems have some degree of ambiguity, often as an implicit To test sSMCL in a simple setting, we train ensembles on CIFAR10 using a small CNN
property of an uncertain world. model. We find sharp, class-based specializations emerge in sMCL trained ensembles.

SPECIALIZATION IN IMAGE CAPTIONING

We evaluate on the MSCOCO image captioning task, training ensembles of the
CNN+LSTM model of Karpathy et al. (2015, with and without CNN fine-tuning.
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A kitchen with a stove and a microwave.

A white refrigerator freezer sitting inside of a kitchen.
A white refrigerator sitting next to a window.

A white refrigerator freezer sitting in a kitchen

A cat sitting on a chair in a living room.
A kitchen with a stove and a sink.

A cat is sitting on top of a refrigerator.
A cat sitting on top of a wooden table

sMCL results in substantial gains over other
methods and between 2-5% accuracy over
independent ensembles.

Percentage of each class assigned to each model at
test time for sMCL and classical ensembles. The sMCL models

becomes specialist on subsets of the classes.

Model 3 Model 4
Despite random initializations and
batches, we find deep networks

converge to very similar solutions.

We propose that one cause for this SPECIALIZATION IN SEMANTIC SEGMENTATION
is that training drives each model to

have low expected loss across the We train ensembles for semantic segmentation on PASCAL VOC 2011 using the tully-
einlig) €=, (il aiting) speeeliion. convolutional CNN architecture of Long et al. (2015).

A bird is sitting on a tree branch.
A bird is perched on a branch in a tree.
A bird is perched on a branch in a tree.
A bird is sitting on a tree branch

A small bird perched on top of a tree branch.
A couple of birds that are standing in the grass.
A bird perched on top of a branch.

A bird perched on a tree branch in the sky

Segmentation

A man on a skateboard doing a trick

A person on a skateboard doing a trick
A man on a skateboard doing a trick

A man on a skateboard doing a flip

Captions generated by classical ensembles tend to be only slightly different for a given image (row 1) and often
produce outputs that are poor fits to individual images (row 4). sMCL ensembles are capable of specialization
and their outputs are much more diverse and capture individual image characteristics well.

Captioning
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the gradient with respect to a single models output f,,(x;) is
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Leads to to a simple training algorithm to minimize the oracle loss in SGD-based learners
which we call Stochastic Multiple Choice Learning (sMCL).

sMCL trained ensembles consistently outperform other techniques and independent ensembles on oracle
metrics and produce significantly more unique n-grams at similar sentence length

CONCLUSION

For many complex inference tasks, there is implicit ambiguity and/or
multiple correct possible outputs. By directly optimizing for the oracle
loss, our sMCL allows an ensemble to specialize in response to

Independent
Ensemble Oracle

. \MCL Ensemble Predictions
As D; m is only non-zero for the s nsemble Predictions

minimum predictor, this gradient is only
zero for all other predictors.

Samples images and
segmentations from an
sMCL ensemble and the
top output of a classical
ensemble. Minimum loss
outputs are outlined in

red. Notice that sMCL
ensembles vary in the

[oU 82.64 loU 77.11 loU 88.12 loU 58.70

sMCL Training Algorithm:
For each example in a batch:

[oU 54.26

loU 56.45 loU 62.03

loU 47.68 loU 37.73

- shape, class, and L : oo .
1) Compute the loss of the gxample for each model in the ensemble. frequency of predicted ambiguity and multimodal outputs distributions.
2) Back-propagate the gradient only to the model with lowest loss. e
LS MM a — o sMCL is effective, easy to implement, and model and loss agnostic.

This 'Winner-Take-Gradient’ training is agnostic to both model architecture and loss.




